学术论文

作者:时间:2019-05-30点击数:

[1] Lu H, Zou C, Shao S, Yao H. Large-eddy simulation of MILD combustion using partially stirred reactor approach. Proceedings of the Combustion Institute. 2019;37(4):4507-18.

[2] Liu Y, Cheng J, Zou C, Lu L, Jing H. Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods. Combust Flame. 2019;204:380-90.

[3] Liu S, Zou C, Song Y, Cheng S, Lin Q. Experimental and numerical study of laminar flame speeds of CH4/NH3 mixtures under oxy-fuel combustion. Energy. 2019;175:250-8.

[4] Jia H, Zou C, Lu L, Qian X, Yao H. Ignition of CH4 intensely diluted with CO2 versus hot O2/CO2 with high oxygen concentration in a counterflow jets. Energy. 2019;177:412-20.

[5] Cheng J, Zou C, Liu Y, Liu S, Jia H, You X. Kinetics study of H-atom abstraction from 3-pentanone by Ḣ and ĊH3 radicals and the subsequent isomerization reactions. Fuel. 2019;236:1018-25.

[6] Liu Y, Zou C, Cheng J, Jia H, Zheng C. Experimental and Numerical Study of the Effect of CO2 on the Ignition Delay Times of Methane under Different Pressures and Temperatures. Energy & Fuels. 2018;32(10):10999-1009.

[7] Jia H, Zou C, Lu L, Zheng H, Qian X, Yao H. Ignition of CH4 intensely diluted with N2 and CO2 versus hot air in a counterflow jets. Energy. 2018;165:315-25.

[8] Zhang L, Wu D, Cai L, Zou C, Qiu J, Zheng C. The chemical and physical effects of CO2 on the homogeneous and heterogeneous ignition of the coal particle in O2/CO2 atmospheres. Proceedings of the Combustion Institute. 2017;36(2):2113-21.

[9] Song Y, Hashemi H, Christensen JM, Zou C, Haynes BS, Marshall P, et al. An exploratory flow reactor study of H2S oxidation at 30–100 bar. International Journal of Chemical Kinetics. 2017;49(1):37-52.

[10] Liu Y, Cheng J, Zou C, Cai L, He Y, Zheng C. Experimental and numerical study on the CO formation mechanism in methane MILD combustion without preheated air. Fuel. 2017;192:140-8.

[11] He Y, Zou C, Song Y, Luo J, Jia H, Chen W, et al. Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres. Energy. 2017;141:1429-38.

[12] He Y, Zheng X, Luo J, Zheng H, Zou C, Luo G, et al. Experimental and Numerical Study of the Effects of Steam Addition on NO Formation during Methane and Ammonia Oxy-Fuel Combustion. Energy & Fuels. 2017;31(9):10093-100.

[13] He Y, Luo J, Li Y, Jia H, Wang F, Zou C, et al. Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres. Energy & Fuels. 2017;31(10):11404-12.

[14] Zhang L, Zou C, Wu D, Liu Y, Zheng C. A study of coal chars combustion in O2/H2O mixtures by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry. 2016;126(2):995-1005.

[15] Song Y, Hashemi H, Christensen JM, Zou C, Marshall P, Glarborg P. Ammonia oxidation at high pressure and intermediate temperatures. Fuel. 2016;181:358-65.

[16] He Y, Zou C, Song Y, Liu Y, Zheng C. Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF). Energy. 2016;112:1024-35.

[17] He Y, Zou C, Song Y, Chen W, Jia H, Zheng C. Experimental and Numerical Study of the Effect of High Steam Concentration on the Oxidation of Methane and Ammonia during Oxy-Steam Combustion. Energy & Fuels. 2016;30(8):6799-807.

[18] Cai L, Zou C, Guan Y, Jia H, Zhang L, Zheng C. Effect of steam on ignition of pulverized coal particles in oxy-fuel combustion in a drop tube furnace. Fuel. 2016;182:958-66.

[19] Zou C, He Y, Song Y, Han Q, Liu Y, Guo F, et al. The characteristics and mechanism of the NO formation during oxy-steam combustion. Fuel. 2015;158:874-83.

[20] Zou C, Cai L, Wu D, Liu Y, Liu S, Zheng C. Ignition behaviors of pulverized coal particles in O2/N2 and O2/H2O mixtures in a drop tube furnace using flame monitoring techniques. Proceedings of the Combustion Institute. 2015;35(3):3629-36.

[21] Song Y, Zou C, He Y, Zheng C. The chemical mechanism of the effect of CO2 on the temperature in methane oxy-fuel combustion. International Journal of Heat and Mass Transfer. 2015;86:622-8.

[22] Jin B, Zhao H, Zou C, Zheng C. Comprehensive investigation of process characteristics for oxy-steam combustion power plants. Energy Conversion and Management. 2015;99:92-101.

[23] Cao S, Zou C, Han Q, Liu Y, Wu D, Zheng C. Numerical and Experimental Studies of NO Formation Mechanisms under Methane Moderate or Intense Low-Oxygen Dilution (MILD) Combustion without Heated Air. Energy & Fuels. 2015;29(3):1987-96.

[24] Cai L, Zou C, Liu Y, Zhou K, Han Q, Zheng C. Numerical and experimental studies on the ignition of pulverized coal in O2/H2O atmospheres. Fuel. 2015;139:198-205.

[25] Zou C, Zhang L, Cao S, Zheng C. A study of combustion characteristics of pulverized coal in O2/H2O atmosphere. Fuel. 2014;115:312-20.

[26] Zou C, Song Y, Li G, Cao S, He Y, Zheng C. The chemical mechanism of steam’s effect on the temperature in methane oxy-steam combustion. International Journal of Heat and Mass Transfer. 2014;75:12-8.

[27] Zou C, Cao S, Song Y, He Y, Guo F, Zheng C. Characteristics and mechanistic analysis of CO formation in MILD regime with simultaneously diluted and preheated oxidant and fuel. Fuel. 2014;130:10-8.

[28] Zou C, Cai L, Zheng C. Numerical research on the homogeneous/heterogeneous ignition process of pulverized coal in oxy-fuel combustion. International Journal of Heat and Mass Transfer. 2014;73:207-16.

[29] Liu H, Zou C, Shi B, Tian Z, Zhang L, Zheng C. Thermal lattice-BGK model based on large-eddy simulation of turbulent natural convection due to internal heat generation. International Journal of Heat and Mass Transfer. 2006;49(23):4672-80.


Copyright©2019  华中科技大学化学反应动力学邹春团队  版权所有